Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Microbiol ; 9(3): 864-876, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38443579

RESUMO

The industrial yeast Komagataella phaffii (formerly named Pichia pastoris) is commonly used to synthesize recombinant proteins, many of which are used as human therapeutics or in food. However, the basic strain, named NRRL Y-11430, from which all commercial hosts are derived, is not available without restrictions on its use. Comparative genome sequencing leaves little doubt that NRRL Y-11430 is derived from a K. phaffii type strain deposited in the UC Davis Phaff Yeast Strain Collection in 1954. We analysed four equivalent type strains in several culture collections and identified the NCYC 2543 strain, from which we started to develop an open-access Pichia chassis strain that anyone can use to produce recombinant proteins to industry standards. NRRL Y-11430 is readily transformable, which we found to be due to a HOC1 open-reading-frame truncation that alters cell-wall mannan. We introduced the HOC1 open-reading-frame truncation into NCYC 2543, which increased the transformability and improved secretion of some but not all of our tested proteins. We provide our genome-sequenced type strain, the hoc1tr derivative that we named OPENPichia as well as a synthetic, modular expression vector toolkit under liberal end-user distribution licences as an unencumbered OPENPichia resource for the microbial biotechnology community.


Assuntos
Parede Celular , Microbiota , Saccharomycetales , Humanos , Alimentos , Proteínas Recombinantes/genética
2.
mSystems ; 5(4)2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32788404

RESUMO

Mutant resources are essential to improve our understanding of the biology of slow-growing mycobacteria, which include the causative agents of tuberculosis in various species, including humans. The generation of deletion mutants in slow-growing mycobacteria in a gene-by-gene approach in order to make genome-wide ordered mutant resources is still a laborious and costly approach, despite the recent development of improved methods. On the other hand, transposon mutagenesis in combination with Cartesian pooling-coordinate sequencing (CP-CSeq) allows the creation of large archived Mycobacterium transposon insertion libraries. However, such mutants contain selection marker genes with a risk of polar gene effects, which are undesired both for research and for use of these mutants as live attenuated vaccines. In this paper, a derivative of the Himar1 transposon is described which allows the generation of clean, markerless knockouts from archived transposon libraries. By incorporating FRT sites for FlpE/FRT-mediated recombination and I-SceI sites for ISceIM-based transposon removal, we enable two thoroughly experimentally validated possibilities to create unmarked mutants from such marked transposon mutants. The FRT approach is highly efficient but leaves an FRT scar in the genome, whereas the I-SceI-mediated approach can create mutants without any heterologous DNA in the genome. The combined use of CP-CSeq and this optimized transposon was applied in the BCG Danish 1331 vaccine strain (WHO reference 07/270), creating the largest ordered, characterized resource of mutants in a member of the Mycobacterium tuberculosis complex (18,432 clones, mutating 83% of the nonessential M. tuberculosis homologues), from which markerless knockouts can be easily generated.IMPORTANCE While speeding up research for many fields of biology (e.g., yeast, plant, and Caenorhabditis elegans), genome-wide ordered mutant collections are still elusive in mycobacterial research. We developed methods to generate such resources in a time- and cost-effective manner and developed a newly engineered transposon from which unmarked mutants can be efficiently generated. Our library in the WHO reference vaccine strain of Mycobacterium bovis BCG Danish targets 83% of all nonessential genes and was made publicly available via the BCCM/ITM Mycobacteria Collection. This resource will speed up Mycobacterium research (e.g., drug resistance research and vaccine development) and paves the way to similar genome-wide mutant collections in other strains of the Mycobacterium tuberculosis complex. The stretch to a full collection of mutants in all nonessential genes is now much shorter, with just 17% remaining genes to be targeted using gene-by-gene approaches, for which highly effective methods have recently also been described.

3.
FEBS J ; 286(19): 3757-3774, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31419030

RESUMO

The genus Mycobacterium includes several pathogens that cause severe disease in humans, like Mycobacterium tuberculosis (M. tb), the infectious agent causing tuberculosis. Genetic tools to engineer mycobacterial genomes, in a targeted or random fashion, have provided opportunities to investigate M. tb infection and pathogenesis. Furthermore, they have allowed the identification and validation of potential targets for the diagnosis, prevention, and treatment of tuberculosis. This review describes the various methods that are available for the generation of mutants in Mycobacterium species, focusing specifically on tools for altering slow-growing mycobacteria from the M. tb complex. Among others, it incorporates the recent new molecular biological technologies (e.g. ORBIT) to rapidly and/or genome-wide comprehensively obtain targeted mutants in mycobacteria. As such, this review can be used as a guide to select the appropriate genetic tools to generate mycobacterial mutants of interest, which can be used as tools to aid understanding of M. tb infection or to help developing TB intervention strategies.


Assuntos
Genes Bacterianos , Mutagênese , Mycobacterium tuberculosis/genética , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia
4.
Vaccine ; 37(27): 3539-3551, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31122861

RESUMO

The Mycobacterium bovis Bacille Calmette Guérin (BCG) vaccine shows variable efficacy in protection against adult tuberculosis (TB). Earlier, we have described a BCG mutant vaccine with a transposon insertion in the gene coding for the secreted acid phosphatase SapM, which led to enhanced long-term survival of vaccinated mice challenged with TB infection. To facilitate development of this mutation as part of a future improved live attenuated TB vaccine, we have now characterized the genome and transcriptome of this sapM::Tn mutant versus parental BCG Pasteur. Furthermore, we show that the sapM::Tn mutant had an equal low pathogenicity as WT BCG upon intravenous administration to immunocompromised SCID mice, passing this important safety test. Subsequently, we investigated the clearance of this improved vaccine strain following vaccination and found a more effective innate immune control over the sapM::Tn vaccine bacteria as compared to WT BCG. This leads to a fast contraction of IFNγ producing Th1 and Tc1 cells after sapM::Tn BCG vaccination. These findings corroborate that a live attenuated vaccine that affords improved long-term survival upon TB infection can be obtained by a mutation that further attenuates BCG. These findings suggest that an analysis of the effectiveness of innate immune control of the vaccine bacteria could be instructive also for other live attenuated TB vaccines that are currently under development, and encourage further studies of SapM mutation as a strategy in developing a more protective live attenuated TB vaccine.


Assuntos
Fosfatase Ácida/genética , Vacina BCG/efeitos adversos , Avaliação Pré-Clínica de Medicamentos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/patologia , Mutação , Mycobacterium bovis/patogenicidade , Fatores de Virulência/genética , Animais , Vacina BCG/genética , Feminino , Interferon gama/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos SCID , Mycobacterium bovis/enzimologia , Mycobacterium bovis/genética , Linfócitos T/imunologia
5.
ACS Synth Biol ; 5(10): 1070-1075, 2016 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-27176489

RESUMO

Membrane protein research is still hampered by the generally very low levels at which these proteins are naturally expressed, necessitating heterologous expression. Protein degradation, folding problems, and undesired post-translational modifications often occur, together resulting in low expression levels of heterogeneous protein products that are unsuitable for structural studies. We here demonstrate how the integration of multiple engineering modules in Pichia pastoris can be used to increase both the quality and the quantity of overexpressed integral membrane proteins, with the human CXCR4 G-protein coupled receptor as an example. The combination of reduced proteolysis, enhanced ER folding capacity, GlycoDelete-based N-Glycan trimming, and nanobody-based fold stabilization improved the expression of this GPCR in P. pastoris from a low expression level of a heterogeneously glycosylated, proteolyzed product to substantial quantities (2-3 mg/L shake flask culture) of a nonproteolyzed, homogeneously glycosylated proteoform. We expect that this set of tools will contribute to successful expression of more membrane proteins in a quantity and quality suitable for functional and structural studies.


Assuntos
Engenharia Genética/métodos , Pichia/genética , Receptores Acoplados a Proteínas G/genética , Proteínas Recombinantes/genética , Animais , Células CHO , Camelídeos Americanos , Cricetulus , Biblioteca Gênica , Glicosilação , Engenharia Metabólica/métodos , Pichia/metabolismo , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Recombinantes/metabolismo , Anticorpos de Domínio Único/metabolismo , Resposta a Proteínas não Dobradas/genética
6.
Nat Commun ; 6: 7106, 2015 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-25960123

RESUMO

Reverse genetics research approaches require the availability of methods to rapidly generate specific mutants. Alternatively, where these methods are lacking, the construction of pre-characterized libraries of mutants can be extremely valuable. However, this can be complex, expensive and time consuming. Here, we describe a robust, easy to implement parallel sequencing-based method (Cartesian Pooling-Coordinate Sequencing or CP-CSeq) that reports both on the identity as well as on the location of sequence-tagged biological entities in well-plate archived clone collections. We demonstrate this approach using a transposon insertion mutant library of the Mycobacterium bovis BCG vaccine strain, providing the largest resource of mutants in any strain of the M. tuberculosis complex. The method is applicable to any entity for which sequence-tagged identification is possible.


Assuntos
DNA Bacteriano/genética , Biblioteca Gênica , Estudo de Associação Genômica Ampla , Mycobacterium bovis/metabolismo , Mutagênese , Mutação , Mycobacterium bovis/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA